

Introduction

Incrementality is a core concept in marketing measurement, but it is often misunderstood. As budgets shift into commerce media, marketers are under greater scrutiny to prove that their investment is driving real business growth rather than just capturing outcomes that would have occurred anyway.

IAB DEFINES INCREMENTALITY AS:

Incrementality measures the causal impact of marketing by identifying the additional business outcomes directly driven by a campaign or tactic, compared to what would have occurred in the absence of marketing activity.

In practice, incremental measurement approaches vary widely. Some approaches rely on gold-standard experiments, others on modeled counterfactuals, econometrics, or proxy-based approaches. Each has strengths and limitations. Incrementality differs from attribution and ROAS: those methods show what happened, not whether marketing caused the result. Incrementality is also not static. Changes in competition, consumer behavior, and marketing tactics can shift outcomes. Incrementality provides a flexible way to understand both past performance and future drivers of impact.

The challenge marketers face today with incrementality is two-fold: choosing the right method and understanding the claims it supports and its causal reliability. This paper outlines the primary incrementality methods in commerce media, provides a framework for thinking through approaches, and defines what makes an incrementality model causal.

Incrementality methods vary in their approaches, strength of causality, and scope

Incrementality is in the spotlight in commerce media as marketers face growing pressure to justify increased media spend with retail and commerce partners. They must be able to demonstrate how marketing investment has driven and will drive measurable business outcomes such as sales, revenue, and profit. Unlocking these insights will accelerate commerce media's next growth trajectory.

The framework below summarizes four major categories of methods, their use cases, causal strength, and trade-offs.

Method type	Example of approaches	Justification for being an incremental method	Causal strength	Holistic scope	Strengths / Weaknesses
Experiment- based	Random Control Tests (RCTs), Hold out / Ghost Ads, Matched Markets	Explicit test vs. control for causal inference. Tests can be executed individually on each platform and potentially simultaneously across multiple platforms to measure platform-specific lift.	Strong	Low - usually confined to one platform unless usage of multi-platform holdouts.	Strengths: High rigor (especially user-level tests), geo-tests are highly scalable. Weaknesses: Costly, prone to data contamination without proper controls, time-intensive.
Model-based Counterfactual	Synthetic control, Machine Learning propensity models	Predicts the unobserved counterfactual via statistical or MLmodeling.	Strong to Moderate	Medium - possible to extend across platforms/channels if data sources are linked, but often limited to siloes.	Strengths: Highly scalable and can be applied retrospectively. Weaknesses: Prone to model bias (e.g. omitted variable bias, selection bias) and data quality issues.
Econometric	Marketing Mix Modeling (MMM), Time-Series Regression	Captures long-term, aggregate marketing effects across all business drivers and non-marketing factors (e.g. seasonality, competitor activity).	Moderate to Weak	High - designed to capture all measured channels and broad business impact.	Strengths: Highly comprehensive, can allocate budget across all media, can incorporate non-media factors. Weaknesses: Backward looking, lacks granularity, often suffers from multicollinearity not predictive for one-off campaigns or rapidly changing trends.
Hybrid Proxies	New-to-brand percentage, baseline vs. exposed analysis, platform-reported incrementality, Simple Multi- Touch Attribution	Provides directional evidence of lift by comparing performance indicators or relying on platform-specific attribution / modeling rather than an independent, true control group.	Weak	Low - narrow, often single platform or campaign-specific only.	Strengths: Easy, fast, scalable, always-on. Weaknesses: Lack causal rigor, limited actionability.

What kind of business use cases align best with incrementality approaches?

The usage of incrementality as a measurement approach should be guided by the business goal in mind - not by the availability of a specific measurement method. Different questions require different levels of causal rigor, data access, and time horizons. In practice, marketers can combine multiple approaches to triangulate insights and build confidence in their decisions.

The table below outlines how various incrementality methods can be applied to answer key marketing questions within the context of commerce media. It also illustrates when to rely on each method and how they can complement one another.

How to read this table:

Each cell is color-coded to indicate how well a given approach fits a specific business need:

- Strong fit: The method is well-suited to answering this question with credible, actionable results.
- Conditional fit: The method can help if data, design, or context allow, but limitations should be understood.
- **Limited fit:** The method is not well-suited for this need or should only be used directionally.

Business need	Experiment-based approaches	Model-based counterfactual approaches	Econometric approaches	Hybrid proxy approaches
Optimize always-on campaigns	 Effective for validating optimizations via small holdouts; limited scalability for ongoing programs. 	Strong for continuous counterfactual estimation, marginal lift analysis and rapid post-update recalibration.	Too slow for short-term optimization.	Quick directional reads for in-flight tuning; however, lacks causal rigor and can mislead without corroborating tests.
Allocate commerce media budget across channels	Can inform allocation rules through controlled tests but may not be scalable and lacks efficiency for frequent optimization.	 Useful if cross-channel data is unified; accuracy depends on model specifications and unbiased input data. 	 Designed for budget allocation and long-term cross- channel planning. 	Platform-level proxies don't support channel tradeoff analysis and often exclude competitive overlaps.
Compare performance across commerce media networks	Rarely practical given ecosystem silos and identity fragmentation.	Possible but complex; may require probabilistic matching with higher uncertainty; data access and assumptions limit accuracy.	 Best suited – MMMs provide unified, cross-channel perspective. 	Not suited – platform-bound and incomplete coverage.

Business need	Experiment-based approaches	Model-based counterfactual approaches	Econometric approaches	Hybrid proxy approaches
Compare performance across all marketing channels	Rarely practical given ecosystem silos and identity fragmentation.	Possible but complex; may require probabilistic matching with higher uncertainty; data access and assumptions limit accuracy.	Best suited – MMMs provide unified, cross-channel perspective.	Not suited – platform-bound and incomplete coverage.
Validate ROI of commerce media investment	Gold standard for proving causal lift through RCTs or matched markets.	Scalable complement to experiments between cycles.	Useful for long-term ROI validation but lacks granularity.	Quick directional validation when causal testing isn't feasible, but prone to bias.
Demonstrate commerce media's impact on sales	Ideal for proving lift on specific products or promotions.	Extends experimental findings to broader campaigns.	Captures cumulative long-term sales effects and brand halo.	Confined to short-term, self-reported outcomes without external validation.
Plan and measure full-funnel commerce media campaign	Effective for testing upper/mid-funnel elements individually. Harder to link to lower-funnel KPIs without extended tracking.	 Integrates multi-signal modeling across funnel stages, including brand equity. 	Captures long-term brand + conversion interplay.	 Lower-funnel directional read only. Misses mid/upper funnel contribution.
Test new tactics, formats, or partnerships	Best-in-class for innovation testing; provides clean causal readouts and high credibility.	Extends learnings from test environments to forecast broader impact, but sensitive to extrapolation error.	Not built for discrete short- term creative or tactic tests.	May indicate engagement or reach shifts but not incrementality.
Calibrate and validate platform-reported lift estimates	Serves as ground truth to benchmark platform claims.	Reconciles modeled vs. platform lift estimates for triangulation; enables bias detection.	Useful for macro-level benchmarking over longer cycles.	Starting point but requires validation from proven causal methods to avoid false confirmation.

Technical Deep Dive: What makes an incrementality model causal?

At its core, incrementality is about answering a causal question: What changed because of the marketing action, versus what would have happened without it?

For a model to credibly answer this counterfactual and claim causality, it must successfully adhere to three core requirements:

A CREDIBLE COUNTERFACTUAL OR INTERVENTION

- **Definition:** Establish a valid "what if not" scenario or a clearly defined intervention that separates test and control groups. The counterfactual represents what outcomes would have looked like in the absence of the marketing action. Interventions creates the necessary conditions for comparing treated versus untreated groups (e.g., user-level or geo-level separation).
- Why it matters: Without a credible counterfactual, measured differences may reflect correlation rather than true campaign impact. The rigor of this initial design is the primary factor determining the causal strength of the entire model.
- Examples: Randomized control groups (RCTs) (for user-level rigor), Holdouts / Ghost Ads (for platform-specific controls), Matched Markets (for geo-level testing), or Synthetic Control Groups (for model-based counterfactuals).
- **Limitations:** Establishing a credible counterfactual can be costly and time-intensive. Furthermore, with proper controls and isolations

(especially in multi-platform scenarios), the counterfactual is prone to data contamination (e.g., control group exposure to the ad on an unmeasured platform).

• **Traits connected:** Interventional orientation (asking a "what if" question) and Estimand-first discipline (precisely defining the effect to measure).

2 CONTROLLING FOR BIAS

- Definition: Ensure the measured effect reflects the campaign's
 impact rather than other hidden factors that influence the outcome. In
 practice, it is rarely possible to remove all sources of bias, but welldesigned causal methods can reduce it to a level where results are still
 actionable and useful.
- Why it matters: Bias can easily distort results, leading to
 misallocation of budget. Factors like seasonality, pricing, promotions,
 competitor activity or unmeasured concurrent campaigns can make
 results misleading if not accounted for (omitted variable bias).
- Critical sources of bias: Model Bias (e.g., selection bias in observational data), Multicollinearity (especially in aggregated models like MMM where media channels are correlated), and Data Quality Issues (inaccurate or incomplete linkage of cross-platform exposure data).
- How to address: Use explicit identification assumptions, control for confounders (including non-media factors in the model), test for parallel trends (in time-series data), or use geo-randomization and instrumental variables when appropriate.

 Traits connected: Explicit identification assumptions and Bias-andvalidity tests (as necessary commitment to proving the model's structure is sound).

3 SEPARATION OF SIGNAL FROM NOISE

- Definition: Distinguish true incremental effects from randomness, sampling variability, or insufficient data. Noise can never be fully removed, but well-designed studies can reduce its influence and quantify the uncertainty around results.
- Why it matters: Even if the design is conceptually sound, a lift estimate that is statistically insignificant (e.g. falls within the noise floor) is not reliable for decision making. A failure to detect a real effect due to small sample size represents inefficient allocation of testing budget.
- How to address: Require statistical robustness e.g., confidence intervals that exclude zero, bootstrapping, falsification tests, and sensitivity analyses to verify results. Critically, the time dimension often helps separate real effects from noise and short-term variance: repeated measurement across periods can reveal whether observed lift persists or was random fluctuation. This underscores that incrementality is not a one-and-done test but an ongoing process that adapts to changing market and consumer dynamics.
- Traits connected: Bias-and-validity tests (robustness checks) and Counterfactual simulation (ability to project alternative actions with uncertainty quantified).

Approaches that satisfy these principles — whether experiment-based, model-driven, or econometric — can claim causal validity. Others may still be useful as directional proxies but fall short of causal rigor.

Conclusion

Incrementality is not a single technique but a family of approaches, ranging from rigorous randomized experiments to directional proxies. What unites them is the goal of isolating the true business impact of marketing activity. But not all methods are equal in their ability to establish causality, and not all use cases demand the same level of rigor.

Marketers should align the method to the decision at hand:

- For high-stakes strategic questions such as budget allocation, crosschannel planning, or proving ROI to the C-suite - use methods with stronger causal foundations.
- For fast, tactical optimization or operational decisioning, lighterweight proxies may be acceptable, provided their limits are acknowledged.

Ultimately, causal measurement requires three elements: a credible counterfactual or intervention, control of bias, and separation of signal from noise. As commerce media grows, adopting a shared framework will allow marketers, agencies, platforms, and retailers to measure consistently, compare results fairly, and connect investment to genuine business growth.

Acknowledgment

This document was developed by the IAB Commerce Board, IAB's Task Force on Incrementality, and IAB Europe's Retail Media Committee and Retailer Council. This project represents weeks of collaboration and sharing of expert insights from a cross-section of our industry with the objective of providing further insights and clarity on incrementality's place when it comes to measuring commerce media's impact on a business. We also took into account work previously done by national federations such as Alliance Digitale and BVDW. IAB would like to extend a special thanks to the following individuals that contributed their time & insight in support of this paper.

Contact

Collin Colburn

Vice President, Commerce & Retail Media, IAB collin@iab.com

Marie-Clare Puffett

Industry Development & Insights Director, IAB Europe puffett@iabeurope.eu

COMMERCE BOARD OF DIRECTORS:

Aaron Sobol

Head of NA Media Investment and Data Governance, Unilever

Abishake Subramanian

GVP, Customer Marketing & Media Monetization, Walgreens

Amy Oelkers

GM of Commerce, US, TikTok

Bill Steinke

VP, Group Media Director, MMGY Global

Bob Avellino

Senior Innovation and Growth Officer, Amazon DSP, Amazon Tech, Tinuiti

Briana Finelli

Head of Commerce, US, WPP Media

Colleen Hotchkiss

President, Growth Practices, Publicis USA

Dan Williams

Chief Revenue Officer, 3 Day Blinds

Dawn Dawson

Chief Marketing Officer, Mortgage Solutions Financial

Elizabeth Marsten

VP, Commerce Media, Tinuiti

Ethan Goodman

EVP, Global Digital Commerce, Mars United Commerce

Jennifer Bryce

Associate Director, Head of Retail Media Partnerships & Investment, US, Unilever

Jill Cruz

Executive Vice President, Commerce Strategy, Publicis USA

Joydeep Sinha

Senior Director, Alvarez and Marsal

Kate C Monaghan

EVP, Integrated Investment & Retail Partnerships, Horizon Media

Katie Neil

Head of Connected Commerce, The Coca-Cola Company

Kiri Masters

Retail Media Industry Analyst, Retail Media Breakfast Club

Liz Roche

Vice President of Measurement & Media, Albertsons Media Collective

Marni Schapiro

Global Head of Advertising, Afterpay

Melissa Sierra

EVP, Media Integration, USIM

Michelle Tisdale

Chief Data & Analytics Officer, Omnicom Media Group

Mike Petrella

Managing Director, Strategic Partnerships, Kinective Media by United Airlines

Molly Hop

Executive Vice President, Market, Havas Media Network NA

Nicole Watson

SVP, Global Marketing, Consumer Skincare, Crown Laboratories Inc.

Parbinder Dhariwal

VP, General Manager, CMX

Premesh Purayil

Chief Technology Officer, Outfront Media

Ram Singh

Chief Data Officer, Night Market

Sach Malik

VP, Global Head of Revenue Strategy and Operations, Afterpay

Sarah Marzano

Principal Analyst, eMarketer

Sean Crawford

Managing Director, SMG

Shawn McGahee

Head of Retail Media, Google LLC

Sonia Gupta

Managing Director, Alvarez and Marsal

Steve Baxter

EVP, Retail Media, Ovative Group

Will Margaritis

Executive Vice President, Commerce & Retail, dentsu

COMMERCE MEDIA INCREMENTALITY TASK FORCE:

A Noori

Senior Manager, Criteo

Abhi Jain

Senior Director, Media Analytics, Instacart

Andréa Couture

Head of Sales, Stay22

Anil Kumar Pandit

Managing Partner, Data, Publicis Media

Ashley Haltzman

Senior Vice President, Retail and Commerce Media, dentsu

Bhanu Bhardwaj

Group Director, Product Management, Walmart

Briana Finelli

Head of Commerce US, Wavemaker

Chris Ballor

Senior Director of Advertiser Analytics, Inmar Intelligence

Christophe Dominiak

Product Director, Ad Performance & Measurement, Criteo

Chuck Billups

Global Head, Retail Media Advertising, PRN, LLC

Dan Farina

Director, Digital Strategy, Mediassociates

Dilini Fernando

CMO, Freeosk

Emily Starer-Wallace

General Manager, Data Partnerships, Fetch

Eric Brackmann

VP, Commerce Media, Koddi

Erin Richardson

VP, Product, Epsilon

Ghayyath El Masri

Email Campaigns Specialist, Freeosk

Hannah Freedman

Associate Director, Analytics, Digitas LBI

Harman Sodhi

Sr Director, Solutions Consulting, Criteo

Heather Clark

Director, Retail Media Product Marketing, Criteo

Jack Lindberg

Head of Product Commerce Media Intelligence, Shalion

Jake Kastner

Ads Measurement Strategy, Uber

James Allison

Director, Market Development, Advertima

Jared Lapin

Chief Strategy Officer, Consumable

Jesse Math

Vice President, Strategic Partnerships, Keen Decision Systems

Jinu Peyeti

Senior Director, Audience Insights and Measurement, Albertsons Media Collective

Jonathan Rosen

Global EVP, Strategy Retail Media, PRN, LLC

Joseph Frick

VP, Business Development G Comm, Goodway Group

Kris McDermott

SVP, Commerce, Spark Foundry

Mara Greenwald

Senior Vice President, Retail Media, Kinesso

Mark Rose

Strategic Planning, TransUnion

Matt Baron

Manager, Measurement & Analytics ADUSA, Ahold Delhaize USA

Matthew Ogbeifun

Content Policy Manager, Audible.com

Maxime Vedelago

Product Data Scientist Manager, Criteo

Megan Cameron

EVP, Commerce & Retail Media, dentsu

Meghan Corroon

Co Founder and CEO, Clerdata

Melissa Kreuter

Vice President Analytics, 85Sixty

Paul Brenner

SVP of Global Retail Media & Partnerships, In-Store Marketplace

Rami Nuseir

Head of Marketing, Stay22

Robin Wheeler

Chief Revenue Officer, Fetch

Rose Tagas

SVP, Commerce, Kinesso

Samantha Pérez-Chavez

SVP, Global Commerce, Kinesso

Shawn Walter

Chief Operating Officer, Adrenaline Interactive, Inc.

Sneha Popley

Product Manager, Koddi

Stephanie Martone

Global Industry Lead, Measurement, Meta

Steve Baxter

EVP, Retail Media, Ovative Group

Steve Pomeroy

SVP, Commerce Analytics, Digitas LBI

Syed Ahsan

VP, Partnerships, Osmos

IAB EUROPE'S RETAIL MEDIA COMMITTEE AND RETAILER COUNCIL:

Assya Daskalova

Senior Client Partner CPG & Beauty, Uber Ads

Ben Peterson

Global Strategic Retail Media Manager, JustEat Takeaway

Christian Raveaux

Director Retail Media Connect, REWE

Cristina Rodriguez Cobreros

Project Manager Retail Media Technology / MarTech, REWE

Dirk Hahn

Product Management Director Retail Media, Schwarz Media

Jorn Zwetsloot

Lead advertising & business operations, Ahold Delhaize

Justin Sandee

Director Commercial Development, Bol.com

Lena Marquardt

Lead Retail Media Intelligence and Analytics, Douglas

Magdalene Rynkiewicz

Head of Retail Media - Insights & Project Management, REWE

Maurits Priem

VP Monetization Europe & Indonesia, Ahold Delhaize

Ollie Shayer

Senior Director, Global Strategy and Innovation, SMG

Patricia Grundmann

VP of Retail Media | MD OBI First Media Group, Obi

Paul Rottstegge

Head of OFMG Offer & Ad Tech, Obi

Pierrick Gallerne

Sr. Measurement & Insights Analyst - FR Lead, Uber Ads

Rachel Gómez

Director Retail Media, JustEat Takeaway

Samya Ruiz

Head of Insights and Measurement | International, Unlimitail

Sébastien Camusot

VP Retailers (Sales & Client Services), Unlimitail

Stefanie Lübke

Team Lead Retail Media Technology, REWE

Stephen Shepherd

Head of Strategy and Consulting, Tesco Media

Sultan Oeztuerk

Retail Media Data & Programmatic Expert, Schwarz Media